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1 Introduction

It is a well known fact that, under suitable conditions, the distribution of
a Markov chain on a finite state space converges to equilibrium as time
increases. The main focus of this essay is on techniques that may be useful in
capturing how this convergence is affected asymptotically as N — oo, where
N is some kind of scaling parameter for the state space of the Markov chain.

There is some “real world” motivation for the topics that are covered in
this essay and various applications are introduced briefly in section 6. In par-
ticular, there is discussion covering two implementations of the Metropolis
algorithm and also how Markov chain techniques may be used in the genera-
tion of random numbers. The large state space setting is applicable to these
examples since they both arise from a computational environment.

The fact that many of the applications are computational means that it
is discrete time chains that are of greatest interest and it is for this reason
that the majority of the examples given are for discrete chains. However, it
should be noted that most of the results do have parallels in continuous time
and section 3 touches on some of these.

We now introduce the basic notation that will be used in the essay. The
state space shall be denoted by S and in general we have |S| = N. K
represents an aperiodic, irreducible Markov operator or transition matrix
throughout, with kernel K (z,y) defined by

Kf(z)=Y K(z,y)f(y)

It is a fact that. since K is irreducible, there exists a unique probability
measure 7 such that 7K = 7. This formulation means that 7 is the invariant
distribution for K. It should be noted that there are other ways of defining 7
leading to different names for it. In the essay, invariant distribution, equilib-
rium distribution and stationary distribution are used interchangeably. The
aperiodicity allows us to infer that

K™"(z,y) = 7(y) as n — oo, Ya,y € S. (1)

That this limit occurs is common knowledge and it is the rate of conver-
gence of K"(z,-) to 7 that is our primary concern. Consequently, we need
a way of measuring the distance between the two distributions. The follow-
ing section introduces the distances that are used in the essay and explains
briefly why they are of interest.



1.1 Choice of distance

A natural choice of distance between probability measures is the (total) vari-
ation distance and is defined for measures y and 7 on S to be

= mllry = Z () z)).

zeS

It is this distance that we shall be most interested in when considering how
far K"™(z,-) is from 7.

Other distances regularly used in analysis are the [P distances. These are
induced by the [P norm with respect to the invariant measure 7:

111, = (S ralPete )/

TES

It is the [? distance that is of most use in the areas that are discussed in this
essay. This is because of the Hilbert space structure that it provides, the
relevant inner product being defined by

f;g/ Zf

When using this distance, rather than working with K"(z,-), it becomes
sensible to work with the density &7, defined by
K" (z,y)
(y)

The reason for this is one of scaling as it allows a comparison with the
variation distance. By definition, we have that

k7 (y) =

2||K™(,-) = 7llrv = ||k — 1l
and we also have
k2 =1l < [|&2 = 1|2 < o7 V2(ED = 1]y

where 7, := min, 7(x). As we shall see in the course of this essay the left
hand inequality is particularly useful as it allows us to obtain upper bounds
on the variation distance using [ arguments.

Another quantity of interest is the separation distance. This is defined to
be. for measures p and T,

M@}‘

duep (11, ™) = max { -2
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We note that. although this is not a metric, it is useful to us because it

satisfies
“/1' - 7rHTV < dsep(/% 7r)

and so any upper bound for d., immediately gives us a bound for the vari-
ation distance.

1.2 Methods for bounding distance from stationarity

There is a range of methods for bounding the distance from stationarity of
Markov chains. These include using Fourier analysis, coupling times, strong
stationary times and eigenvalue bounds. Fourier analysis is particularly ap-
plicable to chains on finite groups and we shall see an example of its use in
section 6.2.

To contrast with the eigenvalue methods that will be the core of this
essay, a description of the ideas behind coupling and strong stationary time
bounds is given here. First. we consider two chains, one starting from =z € S
and another starting with initial distribution 7. Define T" to be the time that
the two chains meet (the coupling time). It can easily be shown that, Vn > 1,

I1K™(z,-) = 7llzv < P(T > n). (2)

In fact, in [11], it is shown how this type of coupling argument may be used to
prove the convergence to equilibrium stated at (1). In section 6.2 an example
of how an adapted version of this bound may be used is presented.

Define (X,,)§° to be a Markov chain on S with transition matrix K, start-
ing from x € S. A strong stationary time is defined to be a stopping time for
(X)), T say, such that

PX,=ylT=n)=m,.V0<n<oo,yecbl.

i.e.(conditional on T being finite) X7 has the distribution 7. If such a time
exists it can then be deduced that, Vn > 0,

dyep(K™(z, ), 7) < P(T > n).

It is shown in [2] that strong stationary times are actually special cases of
coupling times. However, the intuitive description is different and does give
another way of approaching the construction of an appropriate time.

Furthermore, it has been proved that there exist optimal coupling and
strong stationary times (ones for which the inequalities are equalities). How-
ever, one major problem with using such stopping times to find bounds is
that there is no general theory about how to construct them.
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It transpires that upper bounds on the distance from stationarity may be
constructed using knowledge of the eigenvalues of K only. This approach is
introduced in section 2. Although we do lose the optimality of the bounds,
we are able to get away with using less information about the chain. This
means that bounds of this nature are of particular interest when dealing with
a large state space.

Since the eigenvalues of K are of such interest. there has been progress
made in trying to estimate their values by means other than explicit calcula-
tion. One approach is introduced in section 4 and involves the consideration
of geometric quantities associated with the Markov chain. Another approach
that is not touched on here is to use comparison techniques. The basic idea
for these is that we may sometimes deduce things about a chain from a similar
chain that is easier to analyse by making suitable comparisons.

In section 5 we discuss an aspect of convergence to equilibrium that is not
captured by looking at upper bounds alone. By analysing the convergence
more closely we see that in some chains the distance from stationarity remains
large for some time and then rapidly decays. This is known as the cutoff (or
threshold) phenomenon.

2 Eigenvalue bounds

The time reversal of K is the Markov operator K* defined by

. m(y) K (y, z)
K (I, y) - ’ﬂ'(l’) '
Note that this means K* is the adjoint of K with respect to (-,-). If K* = K
we say that K is reversible. It turns out that reversibility is a property that
gives us an immediate and simple way to obtain exponential bounds on the
distance from stationarity of a Markov chain. In this section we shall see
why the eigenvalues of K are of particular interest in this case. We shall also
see how, in the irreversible case. one may establish similar types of bound by
considering a reversible Markov operator related to K.

2.1 Characterisation of eigenvalues of reversible K

When K is reversible or, equivalently, self-adjoint then it is a result from
linear mathematics that it has real eigenvalues (5;) ;" and that there exists
a corresponding basis of real orthonormal eigenfunctions (v;)N 5. For con-
venience, arrange the eigenvalues in non-increasing order. Note then that
Bo=1and 9y = 1.



There is more than one way to characterise the eigenvalues of K, the
following minimax/maximin representations prove to be useful:

- _ ex(F ) 1|
1-Fi = Wdim(W) i1 {fer{/lva}”io{ /13 }}

_ o {min{SK(f f)}}
Widim(WL)<i | fEW Hf“z

ex(f, f) = (I - K)f, [).

As we shall see. there is particular interest in f; and By_; for which the
above result specialises to

—1 — min €K(f>f)_7T y
&_1f{W%'mo} )

where

s =1 mp ) 5

2.2 Eigenvalue bounds for reversible chains

Suppose that K is reversible. Using the notation of the previous section, the
orthonormality of the eigenvectors allows us to express K™ in terms of its
componentwise projections onto each basis vector.

N-1 N-1
K™z,y) = K"l(z) = > (K", ¥i)vi(z) = Y (1y, K™ hi(x)
g==0 1=0
N-1
= > (1, ¥i)BMi(z Z Bi'i(x )7 (y) (5)
=0

This decomposition then allows us to evaluate precisely the [? distance to
stationarity of the chain (using the orthonormality of the eigenfunctions):

N-1 N-1
Ik = 1 = 1Y B @l = X AEnyi(e)
i=1

As stated in section 1.1, this result may be used to provide an upper bound
for the total variation distance. However, this bound may be unsatisfactory
as it depends on knowing the eigenfunctions of the Markov operator which
could be difficult or time consuming to calculate. We can, rather crudely,

remove this dependence by bounding ?Z(z) by 1/m(z) to give the bound



b - 1 < = 5=

This result still depends on knowing all of the eigenvalues of the chain.
In cases where N is large then this may prove to be problematic. As we will
see later, there exist methods for bounding the largest (in modulus) of these
B = min{ Sy, |fy_1|} and so we may want to use the bound

N-1
ks = Lz < 87" 3 ¥i() = B |lkz — 12 (6)

We have

0_ 13;(3/) _

and hence, (6) becomes

K =12 < ;é—)ﬁf”- (s)

Although eigenvalue bounds can be sharp, it should be noted that by
bounding the variation distance using this result we are indeed losing accu-
racy. The example (from [6]) we now give is one case where using just S, is
far from optimal.

Random walk on a group
First, let G be a finite group and P be a distribution on G. Define K by
K(z,y) = P(yz™").

Now define (X,)§ to be a random walk on G with step distribution P, i.e.

X, =Y, xY, 1%...xY; and Xy = gy, where g; is the identity element of G

and (Y,,)$ are independent random variables on G, each with distribution P.

Thus, (X,,)§ is a Markov chain on G with transition matrix K and X, = go.
We now consider the specific distribution

P =(1-0)dy + 0u

where 6 € (0, 1], d,, is the point mass at the identity and u is the uniform
distribution on G. With this setup we have that 7 = u, 5, =1 — # and

K"(go.)=(1—-6)"0g +(1—-(1-60)")u.
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From which it is straightforward to obtain that
170, ) ~ ey = (1= 1) (1= 0"
go: Tirv = G| :

The upper bound, (8), gives that
1

m(z)

1K"™(90, ) = 7llrv < %llk’; =1z < By = %[GII/Q(]. - )"

which is not a good bound for large |G]|.

2.3 Eigenvalue bounds for irreversible chains

The arguments used in the previous section clearly depend on the reversibility
of K to allow the real orthonormal basis to be used. We now discuss methods
of reversiblization presented by Fill, [8], which allow similar results to be
obtained by constructing reversible Markov operators from K.

Define the multiplicative reversiblization, M(K), of K by

M(K) = KK*

and the additive reversiblization, A(K), of K by
1
A(K) = 1K + K°) )

It is straightforward to show that both A(K) and M(K) are both re-
versible Markov operators with invariant distribution 7. If we let (5;(M))i

be the eigenvalues of M arranged in non-increasing order then we obtain:

Theorem

1k = 113 < =B (M)"

L
m(x)

To prove this we require the following lemma:

Lemma (Mihail’s Identity)
For K and M (K) defined as above we have
Varw(f) = Var?r(K*f) + 5M(f7 f)

Proof of Lemma: If we first note that 7(f) = 7 (K*f), then it follows that
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em(f,f) = (U=KK),[)=(Ff)— (K[ Kf)
= Var,(f) — Var (K" f)
O

Proof of Theorem: Note that 7(k?) = 1 and so [|k? — 1]|2 = Var, (kD).
Also, it is a fact that K*k” = k"', And so when we apply Mihail’s identity

to k7 we obtain
153 = 113 = (17 = 1113 + ena (K, £)-

Then, since e, (K2, k2) = ep (k2 — 1, k2 — 1), we may use the characterisation

T
of the second largest eigenvalue of a m-reversible matrix given at (3) to give

the inequality
165 = 1013 > 1&3*" = 115 + (1 = Bu(M))[Ik5 — 1.
Induction then gives
1k5 = 1113 < Bu(M)"||kg — 1[5

and the result follows from (7).

Remarks:

1. If K is reversible, then the eigenvalues of M are equal to (6?)~ ;! where
(B)N5! are the eigenvalues of K. Hence, 82 = 8,(M) and so this result

recovers the rate of convergence established before.

2. A corollary of this result is that if K is strongly aperiodic (K(z,x) >
%: Vz), then the same conclusion holds when £;(M) is replaced by
B1(A). We show this by noting that the identity

M(K) = A(K) + %M(QK e i]

implies that, because (2K — I) is a stochastic matrix,
1 _
Bi(M) < Bi(4) - {1 - BIMEK ~ 1))}

To see this, use the characterisation of eigenvalues given at (3). It is a
fact that the eigenvalues of M are in [0, 1] and so

Br(M) < Bi(A).



2.4 Eigenvalue bounds as N — o

The results established so far hold for any Markov chain with a finite state
space. In applications it is often the case, when we have family of related
chains with increasing state space size, that we find

Br(M) = ¢~V max{1/7(z)} = of2 (V)

with f;(N) — oo fori =1, 2.

The bounds proved give us that max, [|[k7—1|]s < e “forn > fi1(N) fo(N)+
2¢fi(N). This means that the time to stationarity, T, of the chain is less
than fi(N)(f2(N) + 2), where

T, :=min{n > 0 : mgx“k;l 1l < e’}

and the subscript refers to the fact that we are measuring the distance with
the [? norm. Let Ty be the corresponding quantity when the distance used

in the definition is total variation.
To illustrate this and the efficiency of eigenvalue bounds we discuss two

examples:

Random walk on {0,1,..., N}
Define S = {0,1, ..., N} and let

1 .
— 2 1f(x,y):(0,0),(N,N)\0r }LE——y‘:l
K(z,y) { 0 otherwise.
This defines an aperiodic, reversible Markov chain on S with invariant dis-
tribution 7 (z) = sA5. The eigenvalues of K are

B; = cos (Nﬁil) =01, N.

Thus, in the notation used above, we have that

1
fl(N) = -
In (cos (—’—T—))

N+1

. f2(N) =InN.

Hence, we have that f1(N)fo(N) = O(N?In N) steps are sufficient to bring
the chain close to stationarity. It turns out that only O(/N?) steps are needed
and so this bound is actually out by a factor In N,
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Random walk on a group (continued)

Define our Markov chain as in section 2.2 with P = (1 — 6)d,, + fu. The
chain is reversible and so we have that

Bu(M) = (1-0)°

Thus, in the notation used above
1
AG)) = I = 0)’ £(IG]) =In|G].

Note that in this case f;(N) 4 oo. However, the same argument applies and

we have that
2+1n|G|

<
= 2Im(1-0)

Furthermore, it is not difficult to show that
k5, = 2 = (1G] = D)1 - )"
which means that we may calculate explicitly that

2+In(|G] - 1)
~ 2In(1-6)

T =

and so the upper bound for 75 is particularly good. The same eigenvalue
argument will not give a good bound on Tpy since the upper bound on

I|1K™(go,-) — ||y is poor.

3 Continuous time chains

In this section we look at continuous time chains and see how the conver-
gence to equilibrium compares with the corresponding discrete time chains.
We shall denote the continuous time semigroup associated with a Markov
operator K by (H,);»o and define it by H, = et~ je.

- X tPK™(x,y
Hi(9) = Hifry) = et > T 00)
n=0

We note that when dealing with continuous chains we may drop the assump-

tion that K is aperiodic.
The standard convergence result for continuous time Markov chains is

Hi(z,y) = n(y) ast = oo, Vz,y € S

11



where 7 is the invariant distribution defined by 7K = w. We also have that
7 is invariant for H,. Our main interest is in |[|[HJ — 7|7y, but for technical
reasons we introduce the density hf which plays the role of £} in continuous
time. We shall define h{ by

) = )

and note the inequalities
2 H7 = wllrv < [[hF — Lk < [1AF = T2

These allow the results we obtain for the [? distance to be used in bounding
the variation distance. Finally, we introduce the adjoint operators (H;);>o.
These form a Markov semigroup which satisfies H; = e7*/=%") and

m(x) Hy(z,y) = 7(y) H{ (y, ). (10)

3.1 Reversible continuous chains

In discrete time we saw how, when the chain is reversible, there is a partic-
ularly useful way in which to represent k7 in terms of the eigenvalues and
eigenfunctions of K. Analogously, we may deduce a similar result for Af,
though now it turns out that it is more concise notationally to work with the
matrix [ — K.

Let K be reversible. Let (8;)N5! and (v;)X;' be the eigenvalues and
eigenfunctions of K as introduced in section 2.2. If we set A\; = 1 — ; then
we have that (\;)N5! and (¢;)Y5" are the eigenvalues and eigenfunctions of
I — K with0=X; <A\ <...<Ay_1. We may then deduce that

ha(y) = z ety ()4 (1)

by a similar argument to the one employed at (5). From this result, it is
straightforward to obtain

N-1

1§ = 1013 = > e ()

i=1
and consequently deduce bounds in terms of the A;s. In particular, the bound

corresponding to (8) is

z 1 —
1A = 1|5 < ——e " (11)

7(x)
12



Note how in the continuous case, the only eigenvalue of K that enters this
bound is f; = 1 — A;. In the analogous bound for discrete time we needed

to know the eigenvalue of largest modulus, £, = max{f:. |fn-1l}.

Another observation that can be made is that if K is reversible then the
convergence of the discrete and continuous chains are necessarily not too
dissimilar. To qualify this we state the following bounds, from [12], which
may be proved using fairly elementary methods.

1.

1§ = 1]j3 < ——e™" + [k = 113

I
m(z)

k2 — 12 < B2™(1+ ||hf — 13) + [[hE — 1|5, for n =m + [+ 1

where f_ = max{0, —8y_;}. Taking m =n — 1 in this gives

n 1 n-— T
15 — 1[I < ;(—xjﬁ( Do (lhg - 113,

However, this is a result that cannot be extended to the irreversible case.
A counterexample, as discussed by Saloff-Coste in [12], is a Markov chain on
the integers, mod N, with N = m? an odd integer and

12 fy=a+1,
K(x,y)—{ 1/2 ify=z+m

The discrete time chain can be shown to take O(N?) steps to be close to
stationarity whereas the continuous time chain version takes only a time of

O(N).

3.2 Spectral gap

In discrete time, for irreversible K, we have seen how the distance to sta-
tionarity may be bounded by eigenvalues of a suitable reversibilization of K.
There was a particularly straightforward way of doing this using the multi-
plicative reversibilization, M (K). It turns out that in continuous time it is
the additive reversibilization, A(K), that is easier to work with.

The spectral gap, A = A\(K), is defined by

— min €A(K)(f,f)_ r }
A {__Varﬂ(f) : Var (f) #0
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and we also have

\ = min{eA(K)(fa f),

g = 0} '

We note from (3) that X is the smallest non-zero eigenvalue of I — A(K).

Theorem

1
Ihf = 1013 < ——e™"

7(z)

To prove this we use the following lemma.:

Lemma
[Hef = m(F)llz < e Varg(f). VS € (). (12)
Proof of Lemma: Let u(t) = Var,(H;f). Then

u(t) = [ Hof = m(H ) = | Heof = =(f)]3

and also
u(t) = (Hif, Hf) — w(Hf)* = (Hf, Hif) — 7(f)*.
Hence,
u'(t) = (—(I - K)H.f Hf)+ (Hf —(I - K)H,f)
= —25A(K)(Htfa Htf)
< —Var,(Hyf) = —2\u(t)
Thus,

|Hof — m(H| = u(t) < e ?u(0) = e Var, (Hy f) = e P Var, (f).

Proof of Theorem: Let f(y) = 1,(y)/7(z). Using (10) we obtain

r@H(y) 1 1
ﬂ_(y) W(I) _“Ht (ya )’/F(ZE) Htf(y)

We have noted that H} = e7*U=%") defines a Markov semigroup. It follows
from the definition of A(K) that it has the same spectral gap as H; and so
the lemma implies that

Ihf = m (A3 = NH; f = m(FII; < e Varg(f). (13)

hi(y) =

14



We also have that
1—7(z) < 1
7(z) ~ 7w(x)

m(f) =1, Var,(f) =

and the result follows on substituting these into (13).

O

Remark: We note that when K is reversible then A\(K) = A; and so (11) is
a special case of this result.

4 Geometric bounds on eigenvalues

We have now seen that the second largest eigenvalue of a reversible Markov
operator is of particular interest when analysing the rate of convergence to
equilibrium. The relevant eigenvalues being 3; in the reversible discrete case,
B1(M) in the general discrete case and f;(A) = 1 — X in the continuous case.

In this section we assume that K is reversible and discuss geometri-
cal methods that can be used to bound ;. This is equivalent to finding
bounds on the eigenvalue 5;(M) and A in the general case because M (K)
and A(K) are both reversible Markov operators. We note that, for reversible
K, A(K)=K and so A =1 — f.

We also present a lower bound on the minimum eigenvalue for a reversible
chain, which allows us to construct a bound on f, = min{f, |Sy_1|}. which
is also relevant to the topic of convergence in the discrete case.

The bounds on the eigenvalues are given in terms of quantities that de-
pend on path counting, allowing us to approach what is essentially a linear
mathematics problem in a combinatorial manner.

4.1 Conductance

We first define the probability measure, ¢J. on S x S by

Q(z,y) = 7(z)K(z,y)

and then define the conductance to be

P = min Q(04) .
Acso<r(a)<t m(A)

where Q(0A) = Y, cayea @(z,y). The following result shows how this
parameter can be used to bound the spectral gap A = 1 — f;, the proof
presented here is due to Diaconis/Stroock [7].
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Theorem (Cheeger’s inequality)
%@? <A <29

In fact, the proof of the theorem gives a slightly better upper bound using

®' = min Q(94)
ACS 2 (A)(1 — w(A))

which clearly satisfies &' < ®.
Outline of proof: The upper bound is relatively straightforward to prove
and relies on setting f = 1, for B C S in the definition of the spectral gap.
It is not difficult to calculate that
1
ex(lp15) = 5 >_(1s(z) - 13(y))° K (z,y)7(2) = Q(0B).

z!y

Which gives VB C S,

ex(f, f) - ex(lp,1B) _ Q(0B)
1 {Varﬂ(f) Vara(f) # 0} = Van (1) m(B)1—7(B)

Comparing this to the the definition of &' yields the bound A < 29’

A=

The lower bound is not a triviality and does require some thought. Dia-
conis and Stroock prove the bound with two main steps of which the main
ideas are as follows.

Step 1: Proof that if fu = fVv 0 and S(f) = {=: f(z) > 0} then Vf
with S(f) # @ and k € [0,00) we have
lm(fi) > ex(fe, f4) (14)

it (I —-K)f<kfonS(f).
This can proved by merely expanding out the inner product and noticing

that (f1(z) = f+(¥))* < (f+(2) = f+ W) (f (=) = f()).

Step 2: Proof that for a positive function, f, we have
26(f, Nk 2 ®(f)*n(f?) (15)

where ®(f) := min{Q(0A)/m(A): O # ACS(f)}.
Firstly, by an application of Cauchy-Schwarz and substituting for ) we
obtain the inequality

S 1F(@)? ~ f()21Q(,y) < \/8T(f2ex(f, f). (16)

16



Perhaps the most ingenious part of the proof is in the following calculation
where Q(0A;) is introduced and allows a comparison with ®(f).

Zlf V)Q(z,y) = 4 Z / tdtQ(z, y)

z)<f(y)

=4/t > Q(ﬂsy)

z)<t<f(y

— 4 /O tQ aAt)dt./ where A, = {z: f(z) > t}

> 40(/f) /Ooo tr{z: f(z) > thdt
= 20(f)7(f?)
Combining this with (16) completes step 2.

Completing the proof is now a matter of putting (14) and (15) together
to obtain

k> 2L g (- k0 < kp on s,

Now choose f to be the eigenfunction of (I — K) with eigenvalue A so that
the condition is satisfied everywhere with £ = A. Since 7 (f) = 0, f can be
chosen so that m(S(f;)) = n(S(f)) < 3. Hence, we have that ®(f,) > @
which completes the proof.

4.2 Poincaré inequality

A Poincaré inequality is of the form

Vary(f) < Cex(f, f),Vf.

As noted in [12], the definition of the spectral gap implies that if we have a
C that satisfies a Poincaré inequality then necessarily 1/C < X. We will see
various combinatorial quantities that satisfy such an inequality and which
can consequently be used to bound A.

First, define X to be a collection of adapted paths, v,,. from z to y (one for
each pair (x,y)). Here, we say a path is adapted if for each edge. e = (u,v),
on the path we have K (u,v) > 0, or equivalently if Q(e) > 0. Sinclair, [13],
then defines 7 by

!

Td:

1
(2) - e:g%%};o {Q(e) m,yegE%y Iryxylﬂ_(x)?r(y)} :

17



where |v,,| is the length of the path 7y,

Theorem

A> 2

)

Proof: As indicated above, the result is proved on showing that 7 satisfies
a Poincaré inequality. Note that. by Cauchy-Schwarz

lf(y)—f(w)IQS( > lf(v>—f(U)!) < el X2 1) = f))?
(

u’v)€71y (U,U)E’Yg;y

Hence,

Vare(f) = 3311 - S Pr()n(y

IA

:‘2&2 S 1f ) = FW) eyl (@)m(y)

Y (u,0)EYay

1 1

< 25 1r) - f)PQ, )

)

- EK(faf)-ﬁ

Z I’yzy|7r(x)7r(y)} Q(u,v)

(@,9):(u,v)Evay

Sinclair also defines

which is clearly easier to calculate than 7 because it no longer depends on
the lengths of the paths. We note that if [ := max,, es [Vsy|, the length of
the longest path, then p < pl. Which gives the lower bound for A of #

We also note without proof the following proposition (simple proofs of
the result appear in [7], [12] and [13]).

Proposition
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This gives, in conjunction with Cheeger’s inequality, that gl—z < A. Sin-
clair argues that frequently we will have [ <« p and so this bound will not
be as sharp as iz Further discussion of comparisons between Cheeger and
Poincaré type inequalities appears in section 4.4.

A similar quantity satisfying a Poincaré inequality is defined in [7] to be

=m{ > r%ymvr(x)w(y)}:where alo = 3 Qe)™

Yy €EYzy eEYny

In the case of random walks on graphs, it is remarked by Sinclair, that
P and k coincide and so the bounds provided by them are both identical.
Conversely, in some instances, such as the Ehrenfest Urn model, 7 vastly
outperforms k. In general, as remarked in both [7] and [13], the bounds are
incomparable.

It should be noted that these bounds are by no means guaranteed to be
optimal. Sinclair generalises both p and 5 to depend on a “flow function”
defined on the edges of a weighted graph. After doing this, he derives similar
looking bounds on A to those already described and presents examples in
which these flow dependent parameters outperform the ones that have been
defined here.

4.3 A bound on the minimum eigenvalue

Another useful bound obtained in [7] is for the minimum eigenvalue, Sy _1, of
a reversible Markov chain. We first define ¥’ to be a collection of odd length
adapted paths, o, from z to = (one for each z) and define |o,|q analogously
t0 |Yaylo. Now. define the geometric quantity

=) =mgx{ 3 olar(o)|

This can be used to bound By_; as follows.

Proposition

For reversible K,
2
Byvo1 2 —1+ =

Proof: The reason for only considering odd paths becomes apparent in the
proof for it allows us to represent f(z) as ((f(z)+f(y))— (f(y)+ f(w))+...+
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(f(2) + f(z)). For the purposes of the following calculation only, introduce
the notation e = (e_, ey ) and let I(e) be the distance of e_ from z in oy.

") = 1T {}: 1>l<e><f<e-)+f<e+>>}

<§;§j e searan) (g o)
= _z )+ f(e4))*Qe) Z ozl (2)

< —Z )+ fles))*Qle)

L

= 5 (vr(f )+ {f,Kf))

Here, the first inequality is Cauchy-Schwarz. The final equality is actually

an identity. The result follows on applying the characterisation of the eigen-
values of a reversible Markov operator given at (4).

0O

Diaconis/Stroock remark that this result can be adapted to allow the
paths considered to be o, odd length paths from z to y for each pair (z,y).
Correspondingly, let

J = meax { Z lazy’QW(x)ﬂ'@)} .
Ory€€E0zy

We then obtain Sy_; > —1 4 1// and since the paths o,, can also be used

in the definition of k we obtain that

4.4 Comparison of Cheeger and Poincaré bounds

A question that remains unanswered in general is, for which situations do
Cheeger type inequalities provide better bounds than Poincaré inequalities?
If we define on a finite graph E to be the edge set, d, to be the maximum
degree, v, to be the maximum path length (where there is one path chosen
for each ordered pair of vertices) and b = maxe |[{Vz, : € € Yz} to be the
“maximum bottlenecking” then we obtain easily that




for a simple random walk on the graph. And hence obtain a Cheeger bound

of )
1 [|E|
= < 17
s (5) < "
and a Poincaré bound of 2B
< . 18
d2y,b ~ (18)

In a paper by Fulman/Wilmer, [10], it is demonstrated that (18) is supe-
rior to (17) for simple random walks on trees and vertex transitive graphs.
The paper also shows how for weighted random walks on a vertex transitive
graph with a uniform stationary distribution, the bound (8p?)~! is worse
than p~1.

Conversely, in [13], Sinclair demonstrates that for an asymmetric random
walk on {0,...,N — 1} that (8p?)~! differs from the true value asymptoti-
cally only by a constant factor and that this turns out to be asymptotically
much better than the estimate provided by p~!. This removes any chance of
extending Fulman/Wilmer’s results to weighted trees.

A final point of note is that geometric bounds are not always the best
way of proceeding. An example illustrating this. noted in [10], is of a random
walk on a Ramanujan graph. This is a p regular graph on £g(¢? — 1) vertices
where p,qg = 1 (mod 4). The first eigenvalue of the chain is known and
A=1- % > 0. It is explained that the best path-based bounds will not be

better than 8/(log, 5¢(¢* — 1)) which tends to 0 as ¢ — co. However, using
number theoretic methods to bound & directly. a lower bound for A that is
greater than 0, independent of ¢, may be obtained.

5 The cutoff phenomenon

So far, we have concentrated on upper bounds on the distance from station-
arity. This allows us to make comments on how long is sufficient to run a
chain so that it is close to equilibrium. The upper bounds we have seen are
of an exponential type and so, at worst, the convergence will happen at this
rate. As it turns out. when we do analyse the convergence more carefully,
we see in some families of chains that, asymptotically, the convergence is a
lot more sudden.

There are many ways to define what is known as the cutoff phenomenon
precisely, but the basic idea is that the chain will stay a long way from
stationarity up to some time before rapidly approaching equilibrium. We
present here discrete time versions of definitions set out by Saloff-Coste in
[12] which formalise the cutoff point for a family of chains.
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First, let F = {(Sn, Ky, 7n) : N =1,2,...} be an infinite family of finite
chains. Then

1. one says that F presents a cutoff in total variation or variation cutoff
with critical time (¢y)$ if v — oo and Ve > 0 we have

. LtN(l—ﬂ?)J N —
Ay K ) = ey =1
and
lim max HK}\}:N(HEM (z,-) = 7|y = 0.

N—oooz€eSy

2. if (ty,by)$C are such that ty,by > 0, ty — oo and by/ty — 0, one
says that F presents a cutoff of type (tn,by)$C in total variation if, for
all real ¢, we have

. LtN-H)NCJ N —
]}%O%%J)V(HKN (z.:) = mnllrv = (o),

with f(¢) > 1 as ¢ = —oc and f(c) — 0 as ¢ — 0.

The second definition here clearly implies the first and in fact gives a
slightly more precise description of what is happening near to the cutoff point.
As is noted in [12], these definitions mean that in order to approximate my
one should not stop the chain until £y but it is essentially useless to run the
chain for longer. There are many variations on this definition. For example,
we can also define a cutoff relative to other distances or in terms of continuous
time.

A similar property to the cutoff phenomenon is introduced by Diaco-
nis/Aldous, [2]. They consider each Markov chain started from a fixed initial
position, zY € Sy say, and then consider the distance from stationarity of
the distribution of the chain after n steps. The corresponding effect they call
the threshold phenomenon. Indeed, they define a variation threshold in the
same way as we have defined a variation cutoff but with the max,cs removed.
During the course of this essay we shall see both an example in which the
threshold phenomenon occurs (5.1) and one in which there is no cutoff (6.2).

It is evident that a threshold is a weaker property than a cutoff since a
cutoff requires some kind of uniformity of convergence over the whole of Sy.
One example of where the start points (z})%.; make a difference is noted
by Diaconis, [4]. The example in question is the Ehrenfest urn model with
N balls. Let X2 be the number of balls in a particular urn after n picks. To
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remove the periodicity problem we give some probability to no ball moving
and define Ky by

z 1 N -z

KN(I,QI-—U: ,KN(.'E, )‘m KN(.’E .’L+1) N1

for appropriate z. Then if XY = 0, the chain has a variation threshold at
LN1In N, whereas for X3 = N/2 there is no such threshold.

It is also perhaps interesting to note that in the case X = N/2, only
O(N) steps are necessary suffice to achieve stationarity. Th1s observation
could be relevant in practical situations as it may be advantageous to choose
the start point of the chain so as to reduce the convergence time.

5.1 Product random walk threshold

In this section we present an example from [2] showing how we can infer a
separation threshold for a product random walk given that we know some-
thing about the convergence of a single random walk on a group. We also
quote the result for the corresponding variation threshold.

For each N, define (X¥)%, to be the random walk on GV corresponding
to the distribution PV, ie. (XY)%, is a Markov chain on G*, starting from
the identity, g, with transition matrix Ky defined by

N
= [[ P(iz).
1=1

Let K = K;. We note that if K is not irreducible or aperiodic (equiv-
alently P is not supported on any coset of a proper subgroup of G), the
equilibrium distribution 7y is uniform on GV.

We assume further that for each z € G

K™(go, ) — |G]'] ~ age T, (19)

This is not a ridiculous assumption since, as suggested by the form of K"
given at (5), we typically find K"(z,y) — 7(y) ~ czy|51|™ for some suitable
constants c; .

Theorem

Under assumption (19), F = {(GY, Kn(g¥¥,-),7n): N =1,2,...} has a sep-
aration threshold with critical time (sy)$® where

sy =71InN.
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Also. F has a variation threshold with critical time (ty)° where

T
ty = —2~1HN

Proof of separation threshold: It is clear from the definition of Ky that
N
i=0

Hence,

doep( KR (9, ), mv) = max {1—|GIVKh (g}, %)}

xeGN
‘ N
= 1- {IG min K (go,x)}
= 1- {1 - dseP(Kn(goﬁ ')vﬂl)}N
Assumption (19) gives us that
dsep(Kn(gO: ')a 7T1) ~ Ae_n/T
where A := max(—a,) and so
dS@P(KJT\L[(gévs ')77TN) ~1- (1 - Ae_n/T)N>
from which it follows that for € > 0,
dsep(KILlenN(l”E)J (9. ), 7mn) = 1, a8 N — o0
dsep(K}\,ﬂnN(HE)J (6. ), 7n) = 0,as N = o0

and so F has the desired threshold.

5.2 Weak cutoff

Although the proof of the separation threshold on the product group is quite
straightforward under the assumptions that are used, in many situations ver-
ifying that the conditions of the definition of a threshold/cutoff are satisfied
is not a trivial matter. This leads to the formulation of a weaker definition
that is easier to work with. The definition quoted here is the [ version of
the definition given in [12].

Let F = {(Sy, Kn,7n) : N =1,2,...} be as above. Set Hy, = e "/-Kw)
and then
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1. one says that F presents a weak [*-cutoff with critical time (¢x){° if
ty — oo and Ve > 0 we have

i max ([ o) = 1|2 > 0

and

i max (| 1) = 1|2 = 0.

2. if (ty,by)S¢ are such that ty,by > 0, ty — oo and by/ty — 0. One
says that F presents a weak [2-cutoff of type (tn,by)$ if, for all real c,

we have

Jim max 1Aty +one — L2 = f(c),

with f(0) > 0 and f(c) — 0 as ¢ = 0.

This weaker definition allows us to give a sufficient condition for a weak
cutoff in terms of the spectral gaps of the chains.

Theorem

Fix e > 0. Let F be as previously defined. Let Ay be the spectral gap of

Ky and let
txy = min{t > 0: max ||h%, — 1|2 < e}
TESN ’

A sufficient condition for F to present a weak [2-cutoff with critical time
(tN)(fC is
A}gnoo )\NtN = OQ. (20)

In fact, when this condition occurs we can deduce that F has an [?-cutoff
of type (ty.1/AN)$°. Also, if the chains are reversible then the converse holds.

Proof: First, assume that (20) holds. By the definition of t5 we have that
maXzesy ||AR ¢y — 1ll2 =€ > 0. We also have that, Vz € Sy,

Ih%iwts — U2 = [I(Hy, = mv) (A — D2
HE:  —
< up{l!( Nos mv)ng: l|f||27£0} 1 — 1],
1 £l
< e
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Where the last inequality is a direct consequence of equation (12). Hence

]\11_{%0 Eégl)\f Hh?\/,thLs//\N - 1]‘2 = f(s)
satisfies f(s) < ee™® and f(0) > 0 so that F has the desired cutofl.
Conversely, suppose that (20) does not hold and that each chain is re-
versible. Since (20) does not hold, there exists a subsequence with An,ty; < a
for some finite a > 0. For a reversible chain, H;, it is a fact that

max || H — | > e,

We also have that [|HY, — mnll1 < [|h%; — 1[[2. Thus, Ve >0,

—tn. Ans (14 —a{l+
fg%ff “h%‘\ri,t]vi(l‘l‘f) _ 1”2 > et ~; (14¢) > e a(l+e) 5

and consequently

gé%? Hh]IV,tN(1+6) =1}y A0

which means that there can be no weak [?-cutoff.

O

In fact, the sufficiency of (20) for a weak cutoff does actually apply to
other (P distances, including [*°, when the times ty are suitably modified.
The details of this are omitted here as they do not really throw any more
light on the phenomenon and the proofs require only minor extensions of
that which has been presented.

6 Applications

We have now discussed several areas related to determining the rate of con-
vergence of Markov chains, as yet though we have not really considered why
this may be of interest. It turns out that simulating a distribution, 7. on a
large state space by running a Markov chain with 7 as its invariant distribu-
tion is of great practical interest in areas such as statistical physics, statistics
and computer science.

In these applications it is important to know when is a good time to stop
the Markov chain. If we stop too early, the distribution we sample may not
represent 7 well and conversely, due to the finite speed of the computers that
will be running the simulations, it is also not possible to continue indefinitely.
Hence, it is useful to be able to generate a sharp bound for the distance

26



from stationarity of the simulated Markov chain to enable us to achieve this
balance. Note also the particular advantage a cutoff gives. For, if a cutoff
can be proved. this determines fairly precisely what sort of time will be both
necessary and sufficient to allow a reasonable simulation.

The bounds given in earlier sections are not the only methods used to
bound convergence. Often, when specific Markov chains are considered a
better analysis may be carried out. For example, in the second application
we present, we see how the form of S allows the use of Fourier analysis.
There are also statistical methods to estimate parameters such as eigenvalues
which can then be used to gauge the convergence time. For instance, in [9],
Garren/Smith consider a method of estimating the second largest eigenvalue
of the chain and use this to produce an estimate on how many steps will
be necessary to bring the chain close to equilibrium. However, statistical
methods such as these are not explored in this essay.

In this section we describe results from two main applications detailing
different aspects of this area. The first involves material from [5] and we
give examples in which the Metropolis algorithm’s convergence rate may
be sharply bounded by eigenvalue methods. The second application is the
generation of random numbers on the integers mod N by Markov chain
methods.

6.1 The Metropolis algorithm
Outline of the Metropolis algorithm

One widely used Markov chain Monte-Carlo (simulation) method is the
Metropolis algorithm which allows us to generate a chain with invariant
distribution 7 from the ratios ry, = w(y)/m(z) only. This is particularly
relevant to large state space chains where calculating the normalising con-
stant is infeasible.

Suppose we have a “base chain” on a finite state space, S. This is a
symmetric, irreducible Markov chain that is easy to run. Let the transition
matrix for this chain be K. We then define the stochastic matrix M by

K(z,y)rys if ryp < 1,
M(z,y) =1 K(z,v) if z #yand ryy > 1,
K(z,9) + X osarncs K(3,2)(1 = 1,3) ifz=y.

N

This defines an irreducible, aperiodic and reversible Markov transition
matrix with invariant distribution 7. Furthermore, the formulation also al-
lows a simple implementation of the new chain using merely the base chain
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and coin tossing simulation (see [5] for a greater description). This setup
means that it is the convergence of M(z,-) to 7 that is of interest.

Metropolis algorithm using a random walk on {0,1}"

In this example, we see how a random walk on {0,1}" may be used to
generate a Markov chain with invariant distribution, mg, defined by

9H(0,9:) N
Wg(ﬂ?) = (i—:}:-g)—N.' fOI' x & {0, 1}

where H(z,y) is the Hamming distance between z and y. We also show how
eigenvalues of a Markov chain related to the Metropolis chain may be used
to bound the convergence.

In this example we consider our base chain to be a random walk on {0, 1}
with non-zero transition probabilities being K(z,y) = 7{,— for H(z,y) = L
Hence, we may use the prescription given above to write down M.

% ingx,ygzland HEO,y§<H(O,x§,
)W if H(z,y) =1 and H(0,y) > H(0,x),
M@= (1= 20y 1 g) if H(z,y) =0,
0 otherwise.

Perhaps the most useful observation of the discussion is that for a per-
mutation of “bits”, o(z1,....,2n) = (Te(1)s -, To(y), We have M(oz,0y) =
M (z,y). This means that the chain which records the weight of z, H(0, 1),
is a Markov chain taking values in {0, ..., N} and with transition probabilities

. if j=i—1
m(i,j) =4 (1- )0 if j=di+1,
1-5)(1-0) ifj=1i.

Let the invariant distribution for this chain be py. We have that, because
of the permutation invariance,

| M™0,-) — mgllpv = |m™(0. ) — pollrv.

Hence, an upper bound for ||M™(0,-) — mg||rv may be given in terms of
the eigenvalues and eigenvectors for m which are known explicitly and are
given in [5]. It turns out that

I|M™(0, ) — mallrv < f(6,¢), for n = (In N6 + ¢) (21)

N
2(1+0)
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where f(f,¢) — 0 for ¢ — oo independent of N. In fact, this example
illustrates how useful eigenvalue estimates can be since, also noted in [5], is
the result

lim [|[M™(0,-) — mp|lrv > 0, for n = (In N6 — ¢)

N—oc 2(1 -+ 0)
and so we can not improve on (21) asymptotically. It perhaps ought to be
noted that this result shows how the Metropolis algorithm is not optimal in
simulating from 7y since there do exist methods for doing so which are O(N).

Simulation from a distribution on the symmetric group

Although the previous example is fairly simple, parts of the argument are
well worth noting for use in more complicated chains. For example, consider
the distribution on the symmetric group, Sy. given by

mo(0) = k(0977

where k(0) is a normalising constant and c(c, 0g) is the Cayley distance be-
tween ¢ and oy (this is defined to be minimum number of transpositions
needed to bring o to oy). There is a practical reason for considering distribu-
tions such as this on Sy. For instance, statisticians may need to work with
ranked data and this type of distribution may be helpful when analysing the
data.

The base chain for the Metropolis algorithm is assumed to be a particular
random walk on Sy with transition probabilities

1/(5) it 7= o(i, j) for some i < j,
0 otherwise.

Ko.7) = |

where (4,7) is the transposition of ¢ and j. When the transition matrix for
the metropolis chain is constructed it transpires that, if o and 7 are conjugate
in Sy. then M(id, o) = M(id, 7). This means that, similarly to the previous
example, we may map down to a chain on a smaller state space and consider
the eigenanalysis of this. In this case, it is the Markov chain that records
only the conjugacy classes of the Metropolis chain.

Full analysis of this example is provided in [5]. Again, the authors suggest
that the eigenvalue bound does result in the optimal bound asymptotically.

6.2 Random number generation

Generating random numbers on a computer is a matter of great practi-
cal interest. One method for generating pseudo-random sequences from
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{0,..., N — 1} is to compute them recursively using formulae such as Xn41 =
aX, +b (mod N). Although a and b will be chosen so that (X,)5° has some
of the same properties as a random sequence, the method has the obvious
problem of being deterministic.

In this section, we look at the related recursion

Xny1 = aX, + by(mod N) (22)

where the b, are independent, uniform on {—1,0,1}. Recursions similar to
this are sometimes used in computer graphics algorithms. The question that
we shall be considering is how many steps will it take for the distribution of
X, to become close to uniform on {0, ..., N —1}. We look at the cases a =1
and a = 2 and see how the deterministic doubling that occurs when a = 2 is,
perhaps surprisingly, an effective way to reduce the time that the sequence
takes to become close to random.

In the case a = 1 we have a simple random walk on the integers, mod
N, with some probability given to not moving. The chain (X,)§°, defined
by the recursion and X, = 0, is clearly irreducible, aperiodic Markov with
invariant distribution being uniform on {0,..., N — 1}. We shall show how
the chain takes of the order of N? steps to reach stationarity and exhibits
no cutoff. In doing this, we shall also demonstrate the usefulness of Fourier
analysis techniques when dealing with problems on such a state space. The
argument presented here follows that given in [3].

Throughout this section define Sy := {0, ..., N—1} and define the Fourier
transform of a function, f, on Sy to be

fl@)= 3 Wi

YyESN

where ey = *™/N_ In the proof of the following theorem we shall use the

identity A
N lf@P =N Y |f@)f

€SN zESN

and also the result that for two functions, f and g, we have:

~

(fx9)=f3

where fxg is the convolution of f and g defined by fxg(z) =%, f(v)g9(y—=).
Furthermore, let Ky, 7y be the transition matrix and invariant distribution,

respectively, for the chain on Sy.
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Theorem

There exist «, 8 > 0 such that
_an _Bn
e v < [|KR(0,:) — mnllry < e v7. (23)

Outline of proof: For clarity, in this proof set K"(j) = K3(0,j). Using
Cauchy-Schwarz and noting that K™(0) = 1 it may be verified that

M —mvly < 3 1RGP
J#0

ot

Then, using the fact that K™ is the n-fold convolution of u, where u(z) =
for z € {—1,0,1} and zero otherwise, we obtain

> )™

570

1

|K" = 7nllry < 1

The transform of u may be calculated explicitly to be
1 2 27y
i) =5+ 508 (7).

There are elementary exponential upper bounds on this from which the upper

bound in (23) follows.
For the lower bound. we use an alternative characterisation of the varia-

tion distance for two measures, p and n given by

sup |u(f) — = (f)].
lloo=1

N |

e = 7llrv =

Using f(j) = cos(27j/N) we find that 7x(f) = 0 and

K"(f) = Y K"(7)f()) =Red K"(jley = ReK"(1)

1 2 2 "
= Rea(1)" = {3+ 5eos ()}
Hence, for suitable o, we have

|K%(0,) — mwllrv 2
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Remark: This result gives us that the time to stationarity is of order
NZ2. Furthermore, using the symmetry of the chain (in particular we have
IKR%(0,-) — my|lry = max, |[|[K%(x, ) — 7n||7v), it may be concluded that
there is no variation cutoff.

The case a = 2 is more tricky to analyse and is done so for odd N in
[3]. The argument used there uses rather fiddly bounds to conclude that the
chain reaches stationarity in only O(In NInln N) steps. It is perhaps more
illustrative to present an outline of the proof given in [1] that deals with the
special case N = 2! — 1 by using a stopping time argument to bound the

variation distance.
Let Ky and 7y be the appropriate transition matrix and invariant dis-

tribution when a = 2.

Theorem
For N = 2! — 1 we have, for ¢ > 1/In3,

Jim K" (0,) = mwllev = 0.

Proof: Aldous/Diaconis prove the result using three lemmas. These are
stated here without proof. First though, we define a random variable, U, by

U - 2l—151 + 21_262 + ...+ (5[

where the ¢; are independent, uniform on {—1,1}. The distribution of U is
close to uniform on Sy. Indeed, if we define Py to be the distribution of U
it is straightforward to compute that

1 1 1
1Py = mnllrv = 9l—2 9l _ 1 = 9i-2°

We must also introduce a stopping time for the Markov chain defined by
(22) with a = 2 and X, = 0. We have

Xn = 2n—1b1 + 2n—2b2 + ...+ bn(mod N)
Since N = 2! — 1 and 2! = 1(mod N) this gives
Xn = A12l_1 -+ A22l_2 “+ ..+ Al

with A; =b; + b+ ... for i = 1....,1. T is defined to be the first time that
each of the A; has a non-zero summand. We now state two of the lemmas.
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Lemma: The distribution of X,, conditional on T = m < n is the same
as the distribution of the U * V where V is a random variable independent
of U.

Lemma: Let 7 and p be two measures on a finite group GG. Then

% o= |G v <l = |G v

Now let P™ be the distribution of X,, and Py be the distribution of V.
Applying these two lemmas gives, Ym < n,

|P*"(:|]T =m) —7nllrv = ||Pg* Py — x|y
< |[Pg = nnllrv
1
< oz (24)

We now state the third lemma which is an adaptation of the bound given at

2).

Lemma: Let Y1,Y5, ... be a process taking values in a finite group GG. Write
Q" for the distribution of ¥, and S be a stopping time such that, for some

e >0,
1Q™(-|S =m) — |G| Hlrv < &, Vm < n.
Then
1Q" = |G| lrv < e+ P(S > n).

We note that if [ is chosen so that 227 < ¢, then (24) is precisely the condition
of this lemma. Hence, when we revert to the Ky notation, we obtain

IK%(0,:) — wn|lrvy < e+ P(T > n).
But bounding the right hand side is fairly straightforward since
< 1\™ l
P(TSml) = P(At least one of by, bysr, ..., bisigmeny % 0)' = (1 _ (§> )
We have ¢Iln3 = 1+ ¢ for some § > 0. Thus,

P(T > [cllnl]) < P(T>llchl))=1~ (1‘ (%)Lm”)l

1c1nzl 1\

From which the claim follows.
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